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Ahtract. A comprehensivestudyofjd transition-metal impuritiesin AI iscaniedout using 
theself-consistent green functionlinear-muffin-tin-orbitalmethod. Usingtheself-consistent 
potential at the impurity site we investigate the changes in the local density of states and the 
charge transfer between the impurity and the neighbouring host atoms. The movement of 
the virtual bound states and the phase shifts at the Fermi energy are used to explain the 
transport propertiesofthesealloys. For severalalloysourresul tsfor the impurityresistivities, 
the thermoelectric powers, the Dingle temperamres and the electronic specific heats are in 
good agreement with experimental data and the results oC other calculations. 

1. Introduction 

A better understanding of the effects of impurities in solids is essential for an accurate 
characterization of the electronic properties of real materials. The bulk electronic 
properties of solids are greatly affected and, at times, entirely determined by the 
impurities. The presence of an impurity in an otherwise perfect solid destroys the 
translational symmetry so that the usual R-space methods are not directly applicable for 
determining the electronic structure of these dilute alloys. The simplest as well as the 
most successful approach uses the perturbation theory for solving the dilute alloy 
problem. 

Friedel [ 1,2] was the first to use the virtual bound-state model to explain the transport 
properties of dilute alloys. Other approaches for describing the dilute alloys include the 
Anderson impurity model [3], the localized interaction model of Wolff [4] and the 
localized spin-fluctuation model [SI. The method for describing the electronic structure 
of alloys using the Green function approach, suggested by Beeby [6], was simplified and 
applied to study Ni in Cu alloys by Harris [7]. In the last 10 years Podloucky et a1 [SI, 
Deutz era1 191 and Braspenning era1 [lo] have used this approach to study 3d transition- 
metalaswellass-pimpuritiesin AlandCu. Resultsof [9]and [lOIareingoodagreement 
with the experimental data, indicating the accuracy of the ,Green function Korringa- 
Kohn-Rostoker (KKR) approach. 

t Present and permanent address: Department of Materials Science and Mineral Engineering, University of 
California, Berkeley, CA 94720, USA. 
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As an accurate and realistic description of the alloy requires an accurate description 
of the electronic structure of the solid that acts as the host to the impurity, any improve- 
ment in the description of the solid should result in a better understanding of the alloys. 
The development of the linear-muffin-tin-orbital (LMTO) method as an accurate and 
efficient tool for describing the electronic structure of solids led Koenig and coworkers 
111-141 and Gunnarsson et a1 [15] to reformulate the Green function KKR method in 
terms of the L ~ O  method. We call this approach the Green function LMTO method. 
Because of the energy linearization and the inclusion of the atomic sphere approxi- 
mation, the Green function~momethodismuchmore efficient than the Green function 
KKR method, and is almost as accurate. 

Koenig and coworkers have carried out self-consistent calculations for Mg, Cu and 
Zn in AI as well as impurities in Fe and in ordered metallic compounds [ll-141. In their 
calculations for impurities in AI, only the impurity cell potential is perturbed and the 
Friedel sum rule is always enforced by adding a constant potential. Their results give 
a good description of the charge redistribution around the impurity cell. Since its 
development, the Green function LMTO approach formulated by Gunnanson ern1 have 
been successfully applied to impurities in semiconductors [16]. 

In our opinion, a comprehensive and systematic study of changes in many transport 
properties,suchastheimpurityresistivity, thethermoelectricpower,theDingle tempera- 
ture and the electronic specific heat of the alloys, especially AI-based, is still lacking. 
Although Koenigerulrecognized the need foremployingmore thanonecnergy panel for 
calculatingthe Green function at the impurity site, a systematiccomparisonof results with 
differentnumberofenergypanelsisclearly needed. Also, theeffectsofenforcingtheFrie- 
del sum rule on the calculated electronic properties, with only one perturbed muffin tin, 
may not be justified.Theneglectoflatticerelaxationaroundtheimpurityatom,especially 
whenimpurity and hostatomsarevery different insizes,may becomequestionable. Sinee 
most of these approximations depend on the electronic structure of the impurity atom, a 
study based on different impurity atoms is important for a clear understanding of the 
effects of these approximations on the calculated transport properties. 

In an attempt to remedy some of the problems outlined above, we have carried out 
a detailed study of the electronic properties of 3d transition-metal impurities in A1 using 
the Green function LMTO method. The effects on the calculated transport properties 
of enforcing the Friedel sum rule and that of more than one energy panel are fully 
investigated. Since we perturb only the impurity cell potential and ignore the lattice 
relaxation around the impurityatom. we point out thealloysand theelectronic properties 
for which these might be important. We consider only dilute alloys, meaning that the 
impurities in the solid do not interact with each other. This is ensured by considering a 
single impurity atom in an othemise perfect solid. 

The paper is organized as follows. The method used for calculating the electronic 
structureofthe host solidisindicatedinsection2.1. Friedelsum rule anditsimplications 
are described in section 2.2. Approximations of the Green function LMTO approach are 
described in section 2.3. Section 3 contains a detailed account of our results in terms of 
the local density of state, charge transfer, virtual and bound states, impurity resistivity, 
thermoelectric power, Dingle temperature andelectronicspecific heat for 3d transition- 
metal impurities in Al. Finally, after summarizing our work, we describe our conclusions 
in section 4. 

2. Green function Lwro method 

For solving the alloy problem we first have to obtain the electronic structure of the host 
solid and then replace one of the host atoms by an impurity and express the perturbed 
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lattice Green function in terms of the unperturbed lattice (host solid) Green function 
and the perturbing potential. The resulting perturbation series can be summed exactly 
for a localized perturbation. The assumption that only the impurity site potential is 
perturbed greatly simplifies the summation of the perturbation series. In  the following 
we give a very brief description of the Green function LMTO method. The details can be 
found in [ll-131 and [17]. 

2.1. Green function at the impuriv site 

The electronic structure of the host solid is calculated with the LMTO method described 
in detail by Andersen and coworkers [18,19]. Then under the assumptions that the 
perturbing potential is localized within the central cell, the lattice has cubic symmetry, 
and the angular momentum 1 =z 2, the perturbed lattice Green function at the impurity 
site, G(r, r, E ) ,  is 

where q, (r ,  E )  are the partial-wave solutions for the impurity potential, normalized to 
unity within the Wigner-Seitz (ws) sphere. The potential functions of the host and the 
impurity are denoted by PI(!?) and P,(E) respectively, YL(?) are the cubic harmonics, 
L = (1, m) is the orbital index, and ET represents the lth bound state of the impurity 
potential. X L L  is defined in [13] and [17]. Throughout, we denote quantities related to 
the host solid by an overbar and an energy derivative by an overdot. Once the perturbed 
lattice Green function at the impurity site is known, all relevant quantities can be easily 
evaluated. 

The electronic density of states, nL(E),  can be written as 

with 

AP,(E) = P,(E) - P@) (3) 

being the difference between the potential functions of the impurity and the host atoms. 
For the potential functions we use the third-order approximation as given in [NI. The 
partial waves p,(r ,  E )  are approximated by their Taylor series expansion around E,, with 
terms up to second order in ( E  - E"/). 

We see from equation (2) that the impurity density of states is maximum whenever 

1 + Re ZLL(E)APr(E) = 0 (4) 

for some E = E; .  The energy E ;  at which the resonance can occur is determined by the 
parameter AP,(E) defined in equation (3). Depending upon the value of the parameter 
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AP,(E),  the impurity density of states nL(E) will show virtual or localized levels or no 
distinguishable change. 

2.2. Friedelsum rule 

A criterion for self-consistent calculations can be easily derived by considering the 
changes in the integrated density of states and the Friedel sum rule [SJ. According to the 
Friedel sum rule, the changes in the integrated density of states should equal the number 
of electrons to be accommodated within the Fermi energy of the host crystal. The total 
change in the integrated density of states, AN(E),  is 

where 6x0) and &(O) are the phase shifts due to isolated muffin-tin potentials of the 
impurity and of the host atoms embedded in free space respectively, and 

We can define a total phase shift, qr(E) ,  also called the generalized Friedel phase shift, 
such that 

Equation (7) describes, in terms of the total phase shift qL(E),  the total charge displaced 
up to energy E when an impurity atom is introduced in an otherwise perfect crystal. 
According to the Friedel sum rule, the total displaced charge up to the Fermi energy 
should equal the difference in the atomic numbers of the impurity and the host atoms, 
i.e. 

A N ( E F )  = 2 - 2 

NI,, = AN(E, )  + 2 (9) 

N,, = AN(E, )  + 2 (10) 

N,,, = 2. (11) 

(8) 
where Z and f a r e  the atomic numbers of the impurity and the host atoms respectively. 
Thus for complete screening, with one perturbed ws cell, we must have 

where N,,, is the charge inside the impurity ws sphere. Defining 

we see that the screening rule, given by equation (S), becomes 

When we do not enforce the Friedel sum rule by adding a constant potential, VM(r) ,  
then a comparison between NlOt, calculated by equation (lo), and 2 indicates the kind 
of screening achieved. 

2.3. Approximations 

There are essentially four most important approximations in the Green function LMTO 
method. They are: (i) asssumption of a localized perturbation, (ii) approximate par- 
ametrization of the potential function, (iii) lack of combined correction terms [13,18], 
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Table 1. Comparison of results for AI obtained by LMTO method with combined correction 
terms and Green function LMTO melhod with four energy panels and without the combined 
correction terms. Density of states is in states Ryd-' atom-'. 

V m  ( W )  
Number of s electrons 
Number of p electrons 
Number of d electrons 
s density of states at Ep 
p density of states at Er 
d density of states at EF 

LMTO g2 

-0.716 -0.714 
1.130 1.126 
1.451 1.462 
0.419 0.417 
1.140 1.163 
2.559 2.606 
1.610 1.600 

-- ' _  1 I 

-.e 0 .2 .4 

E (RY) 
Figu~e1.Compa~sonoflocaldensityofstatesforAlinAlcalculatedwiththeGreenhrnction 
LMTO method (four energy panels and V,(r) = 0 dotted curve) with the density of states 
obtained from the MO method (full curve). 

and (iv) finite basis approximation. The implications as well as ways to improve upon 
these approximations are indicated below. 

We assume that the impurity potential is localized within a single ws cell. This 
approximation simplifies the calculation considerably, but to be able to predict charge 
transfer between the impurity and the nearest-neighbour host atoms more accurately 
we should extend the perturbation to at least the nearest-neighbour cells. The intro- 
duction of nearest-neighbour perturbation is not expected to change the trend in the 
charge transfers obtained with one perturbed ws cell. 

An accurateexpression for the potential functionisnecessary todescribe theimpurity 
electronic structure reliably. We parametrize the potential functions as described in 
[13], [17] and [IS]. Around E = ET we use a linear approximation for the potential 
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functions. For determining E ; ,  also denoted by C,, we use the second-order approxi- 
mation 

Ef = E", + CO,(-) (12) 

where of(-) is defined in [lS]. 
The electronic structure of the host is calculated with the LMTO method, including 

the combined correction terms [HI. We do not use the combined correction terms in 
the impurity potential. To show that the lack of combined correction terms in the 
impurity atom Hamiltonian does not introduce a significant error in the calculation we 
used an AI atom as an impurity in AI host. The calculation was carried out with four 
energy panels. The results of our calculation for AI in AI using the Green function LMTO 
method are compared with the results for bulk A1 obtained from the LMTO method in 
table 1. The remarkable agreement between the results obtained with the two methods 
confirms the accuracy of the Green function LMTO approach. In figure 1, the local 
densities of states are compared with the densities of states obtained with the LMTO 
method. The Green function LMTO density of states essentially reproduces the density 
of states obtained for bulk AI using the LMTO method with combined correction terms. 

The use of a limited number of angular momenta introduces a small error in the 
description of the electronic structure of the impurity. We use angular momenta up to 
1 = 2,whichresultsindiagonalmatrixelementsfortheGreenfunctionofthe host. Since 
the impurity atoms have strong d-character, the neglect of higher angular momentum 
components is not expected to affect the results considerably. 

3. Results and discussion 

The self-consistent electronic structure of 3d transition-metal impurities in AI is cal- 
culated under three different conditions to serve as test cases for different levels of 
approximations made in the Green function LMTO method. The calculations are carried 
out using: (i) one energy panel with VM(i-) = 0, (ii) four energy panels with VM(r) = 0, 
and (iii) four energy panels with VM(r)  # 0. In (i) and (ii) the Friedel sum rule is not 
enforced. In (iii) a constant potential is added such that the screening rule is satisfied. 
For convenience, we denote calculations done with (i), (ii) and (iii) by gl, g2 and g3 
respectively. 

The atomic wavefunctions of the impurity and host atoms are calculated by solving, 
self-consistently, the fully relativistic Dirac equation with free-atom boundary 
conditions. The electronic configurations of atoms belonging to the 3d series of the 
periodic table are listed in table 1 of 1171. During the self-consistent Green function 
LMTO calculations we freeze the potential due to all core electrons. The exchange and 
correlation effects are included through the parametrization given by von Barth and 
Hedin [20]. 

To account for some of the approximations mentioned in section 2.3, we include the 
combined correction terms [18, 191 for calculating the electronic structure of bulk Al. 
The Brillouin zone integration was carried out with 916 points in the irreducible wedge 
of the Brillouin zone and the reference energy E,, was chosen to be the centre of gravity 
of the occupied part of the I band. 

Below we present a detailed account of our results for the electronic properties of 
3d transition-metal impurities in A1 calculated with the Green function L h n o  method. 
The results have been collected under the following categories: (i) local density of states, 
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(ii) charge transfer and screening, (E) virtual and bound states, (iv) impurity resistivity, 
(v) thermoelectric power, (vi) Dingle temperature and (vii) electronic specific heat. 

It is obvious that the Green function LMTO method with four energy panels is more 
accurate than with one energy panel. Results obtained by enforcing the Friedel sum rule 
should also give better results, since we know that the impurity is completely screened 
in the metal. The constant potential that has to be added for satisfying the sum rule 
converges quickly to a stable value for most impurities. The problem arises when there 
is a large density of states at E ,  so that a small change in the constant potential results in 
a relatively large charge transfer. We find this to be true in the case of AlCr and M n .  
The perturbation of only the impurity muffin tin and the subsequent enforcing of the 
Friedel sum rule may not be appropriate in those cases where the perturbation on the 
neighbouring atoms is appreciable. Thus, in the following, we quote results obtained 
with different approximations (gl, g2 and 83) but concentrate on the results obtained 
with the four energy panels and VM(r) = 0, i.e. g2. 

3.1. Local density of states 

For dilute metallic alloys, where the impurity is quickly screened, the most dominant 
change in the local density of states occurs at the impurity site; hence as a first approxi- 
mation it is reasonable to assume that host atoms surrounding the impurity remain bulk- 
like. The perturbation of nearest-neighbour atoms, which results in asubstantial increase 
in thecomputationaleffort,isnot required because thecentralsite perturbationpredicts 
results that are in good agreement with the experiments. 

In figure 2 we show the localdensitiesof states (D0S)fOr 3d transition-metal impurities 
in AI calculated with gl .  These local densities of states can be easily understood in terms 
of the bulk density of states and the idea of resonance and anti-resonance points. By 
comparing the s and p densities of states of the impurity with the corresponding densities 
of states of bulk AI, we find that the impurity densities of state have all the structures of 
the bulk DOS but are at least a factor of 3-4 smaller [17]. The s and p densities of states 
donot changemuch aswego through AlTi to AICu. The ddensity ofstates at the impurity 
site is also similar to the bulk AI d density of states, except around the virtual bound 
states that extend from E = 0.3 Ryd onwards for AITi. The movement of the virtual 
bound state from well outside the Fermi energy for AlTi to well inside for AICu can be 
seen clearly. We also see that the virtual bound states deviate appreciably from the 
Lorentzian shape [9]. 

The use of more than one energy panel improves the accuracy of the results because 
of our h e a r  approach, although the difference in the local density of states calculated 
with one energy panel and four energy panels is appreciable only around the resonant 
level as shown in figure 3. Except for AICu, the largest difference in the local density of 
states due to gl  and g2 occursfor A N ,  which is less than 2states/Ryd around the virtual 
bound state where the density of states is more than 100stdtes/Ryd. In the case of AICu, 
the difference in the position of the virtual bound state is relatively large (0.3 mRyd) 
and since the density of states is very high, the difference in DOS due to gl  and g2 is also 
relatively large. Thus, when the resonant level is close to the Fermi energy, as for AICr, 
AIMn and AlFe, one must use more than one energy panel urith one energy panel close 
to the Fermi energy. This enables an accurate evaluation of relevant quantities at the 
Fermi energy which are used for describing the transport properties of alloys. 

For satisfying the Friedel sum rule, we add a constant potential VM(r) ,  which essen- 
tially shifts the density of states calculated without VM(r). ?he resulting differences in 
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E (RY) 
Figure 2. Total local densities of slates for 3d transition-metal impurities in AI using the 
Greenfunction~~melhodwithoneenergypanelandMadelungmnstant V,(r) = Ofgl). 
Top row: Ti, V. Cr and Mn: bottom row: Fe, Co. Ni and Cu. 

DOS for AITi, AlCr and AICu are shown in figure 3. Since we perturb only the impurity 
site and do not take into account the lattice relaxation effects, enforcing of the Friedel 
sum rule should be done with care. This is especially true if the impurity and host atoms 
are of very different sizes, for example CO and Ni in AI. 

3.2. Charge transfer and screening 

The amount of charge in the impurity ws sphere and the total charge for 3d impurities 
in AI are given in table 2. The results for NI,, obtained from g l  and g2 are very similar, 
but the results obtained by enforcing the Friedel sum rule are slightly different. All 3d 
impurities, except Ti, gain some charge from their neighbouring AI atoms. A similar 
trend in charge transfer was also found by Deutz era[ [9]. The total valence charge, given 
by N,,,, is always larger than 2 (except for Cr and Mn) for all the impurities. The 
discrepancy in the values for Cr and Mn is due to the presence of the virtual bound state 
near EF. For complete screening, with only one perturbed muffin tin, N,, should equal 
2, i.e. the impurity is fully screened within thews sphere. Deviations from this equality 
for calculations with g l  and g2 indicate the need for enforcing the Friedel sum rule as 
well as perturbing at least the nearest neighbours of the impurity atom. Calculations 
done with g3 clearly demonstrate the need for perturbing the nearest neighbours of the 
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Table2. ResultsforN,,. andN,.,forimpuritiesinAl usingGreenfunctionimomethodwith 
different approximations (gl, g2 and g3). Full screening within the impurity ws sphere 
implies N ,  = Z.  

Al 3 3.004 3.002 
Ti 4 3.988 3.987 3.480 4.617 4.626 4.030 
V 5 5.090 5.088 4.538 5.631 5.641 5.001 
Cr 6 6.185 6.179 6.738 2.583 2.598 3.440 
Mn 7 7.242 7.232 7.899 -2.501 -2.492 2.062 
Fe 8 8.293 8.279 1.895 8.388 8." 8.wo 
CO 9 9.326 9.309 9.045 9.278 9.289 9.017 
Ni 10 10.333 10.316 10.192 10.168 10.178 10.049 
cu 11 11.277 11.273 11.103 11.070 11.078 10,888 

impurity because, although the sum rule is satisfied, the local valence charge is different 
than Z. 

We also find that for AlCr and AlMn the Fermi energy lies in the middle of the crystal- 
field-split virtual bound states. The presence of the Fermi energy near the virtual bound 
states creates some problems when we are trying to enforce the Friedel sum rule. To 
circumvent the problem, one can consider the weighted average of e,and t,,projected 
densities of states or use a complex energy grid. We do not follow these procedures; 
hence our values for the total charge in the case of AlCr and AIMn are not accurate. 

3.3. Virtual and boundstates 

We use the self-consistent Green function LMTO results and equation (4) to calculate the 
positions of the virtual bound states (ms). For calculating the positions of the d virtual 
level, we take the weighted average of the symmetry-projected densities of states and 
its Hilbert transforms and then use equation (4) with L d. The virtual level, Ed, is 
essentially given by 

E ,  = Se8 + $EcZz. (13) 

The movement of the virtual levels in AI can be understood by considering the filling 
up of the atomic d level of the impurity atom. For example, k t  us consider the movement 
of the virtual levels for 3d impurities in AI. The atomic d level of Ti with its two d 
electrons is well above EF of AI. Thus, the corresponding VBS is also well above EF but 
with its position changed due to the interaction with the host atoms. As we add more 
electrons to the d orbital and increase the nuclear charge, the atomic d level lowers its 
energy, resulting in movement of the VBS towards EF. The virtual bound state crosses 
EF between AlCr and AlMn and it is well inside for AICu. 

Since the half-widths, r, are much larger than the crystal-field splitting, it is more 
appropriate to discuss the virtual bound states Ed rather than E, and EtZ8. In table 3 
the virtual bound states Ed and the half-widths for 3d impurities% AI are given. We 
have also Listed the results of Deutz et a1 [9], as well as experimental values. The virtual 
d level for Ti is about 131 mRyd above EF while for Cu it is about 222 mRyd below. 
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F i p  3. Differences in the total LWS due to 
four energy panels with V,,,(r) = 0 and gl (dolled 
curve), and four energy panels with VM(r) # Oand 
gl (broken curve) for AlTi (upper frame), AlCr 
(middle frame) and AfCu (lower frame). 

Ti V Cr Mn Fe CO Ni Cu 

Feure 4. Impurity resistivities for 3d impurities 
in AI (open circles connected by the full lines) 
calculated with the Green function LMTomethod. 
Full circlesax measurementsol Babicd nl [U]. 

Table 3. Virfual levets Ed. measured with respect to Fermi energy, and the associated half. 
widths r for impurities in AI using the Green function MO method (g2) compared with 
experimental values (a) and theoretical calculation of [7] (b). 

Ti 131.7 73.52 
V 58.9 0.0 

418.9 
288.4 249.8 

Cr 13.0 -22.00 266.1 213.1 
Mn -13.4 -44.10 -51.47 108.9 169.0 102.8 
Fe -29.7 -58.80 -66.17 87.2 146.9 110.2 
CO -50.4 -80.88 -110.29 84.6 110.2 117.5 
Ni -101.3 -132.25 -176.47 65.2 44.0 88.1 
cu -222.2 -227.94 -330.88 47.0 51.4 80.8 
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According to our calculations, the virtual d level crosses EF between Cr and Mn. Our 
values for the virtual levels are closer to E ,  than the experimental values. The largest 
discrepancy is for the VBS of AICU. 

The values for the half-widths associated with the VBS, given in table 3, clearly show 
that the crystal-field splitting is swamped by the rsonance. For example, in AlCr the 
crystal-field splitting, E,, - Ee8 = 36.4 mRyd, while the half-width for the cor- 
responding E, is equal to 133 mRyd. The half-widths indicate that thevss get narrower 
as we go from Ti to Cu, which is confirmed by the experiment, as shown for AlMn to 
AlCu in table 3. The narrowing of the virtual levels can be understood in terms of the 
filling up of the atomic d orbital of the impurity atom. The increased number of electrons 
increases the interaction around the resonance energy, which results in the higher 
densities of states and smaller half-widths as we go from Ti to Cu. Given the fact 
that our calculation for r is approximate, the agreement between our results and 
experimentally determined values of r for AlMn to AlCu b reasonable. 

3.4. Impurity resistivity 

The impurity resistivity is calculated using the Gupta-Benedek [21] approximation. We 
replace the atomicphase shifts bythegeneralizedFriedel phase shiftsso thatthe impurity 
resistivity p is given by IS] 

where c is the impurity concentration, h is the Planck’s constant, e is the electronic 
charge and k, is the Fermi wavevector. 

In the Gupta-Benedek approximation, the Fermi surface of the host is assumed to 
be spherical. To take into account the non-spherical nature of the Fermi surface, one 
can redefine the effective number of conduction electrons, denoted by Z in equation 
(14). We have used the phase shifts, obtainedfrom equation (7), to calculate the impurity 
resistivity for 3d impurities in Al. 

The calculated impurity resistivity due to 3d impurities in AI are plotted in figure 4. 
The impurity resistivity due to different calculations (gl, g2 and g3) are not very different 
and cannot be distinguished with the resolution of figure 4., so we show only the results 
due to g2. The experimental values, measured by Babic et a1 [22], are also shown. 
Although the number of conduction electrons for metallic AI is 3 per atom, it can be 
shown that the effective number of electrons is less than 3. The effective number of free 
electronsisobtained by comparing the free-electron Fermi surfacewith thatof the actual 
Fermi surface of Al. The comparison yields 2.187 electrons per AI atom, and we have 
used Z = 2.187 for calculating the impurity resistivities. We have seen that the virtual 
bound states for 3d impurities in AI start out well above EF for AITi, cross E, between 
AICr and AIMn, and are well inside for AICu. Owing to the presence of the VBS near EF 
in AICr, the Fermi electrons are resonantly scattered, with scattering decreasing on 
either side of Cr in the 3d series. Consequently, the impurity resistivity should show a 
broad peak with maximum around AICr. The predicted variation in the impurity res- 
istivity of 3d impurities in AI agrees quite well with the calculated impurity resistivity, 
as shown in figure 4. 
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Table 4. Thermoelectric power for 3d impurities in AI calculated using the Green function 
urro method (g2) and experimental results (a). Results calculated using localized spin- 
fluctuation theory are also given ( b y .  

~~ 

SD/T(IO-’ pV K-z) 
. ~ ~. ~-~ ~~~ ~. 

a 
~~ ~ . ,:, , ~ -, . 

Impurity SZ bUF 

Ti 0.122 0.1 
V -0.156 0.1 
Cr -0.337 - 1.755 -0.8 
Mn -0.414 -4.441 -5.9 
Fe -0.396 -1.154 -4.1 
CO -0.206 -2.0 
Ni 0,124 -2.0 
cu 0.280 

The calculated resistivities are in good agreement with the experimental values, 
except for AICo. The values of the calculated impurity resistivity are expected to be 
lower than the actual values. because we do not allow for the lattice relaxation or 
perturbation of the neighbouring atoms. The effect of size differences between the 
impurity and the host atoms is expected to be the largest for Ni and Co. Inclusion of 
these effects will lead to increased scattering and hence to higher resistivities. 

3.5. Thermoelectric power 

To illustrate the limitations of the Friedel-Anderson model for dilute alloys, we have 
calculated the diffusive thermoelectric power, ,YD. At low temperatures, the thermo- 
electric power of a metal isessentially due to the scattering of electrons by the impurities 
and it is related to the impurity resistivity by [23] 

d k ’ T  a In p(E) 
3e aE s, =- 

where k is the Boltzmann constant. Using equation (14), the expression for S, can be 
rewritten as 

which is to be evaluated at EF. We used equation (16) to calculate the thermoelectric 
power of 3d impurities in Al. The calculated thermopowers for AlCr, AlMn and AlFe 
are found to be in strong disagreement with the experimental values, clearly demon- 
strating the inadequacy of the Friedel-Anderson model. To be able to explain the 
experimentally observed thennopowers we have to use the localized spin-fluctuation 
theory as mentioned in section 1. 

The impurity contribution to the diffusive thermopower of AI-based alloys is shown 
in table4. The large discrepancy between thecalculated and the observed thermopowers 
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Table 5. Dingle temperature for 3d impurities in AI calculated using the Green €unction 
MO method (gl)  compared with the results of [25](a). 

Dingle temperature TD (K/at.%) 

Impurity g l  a 

Ti 256 289 
V 330 347 
Cr 365 381 
M O  351 370 
Fe 
CO 

299 
219 

318 
229 

Ni 133 139 
cu 64 71 

for Cr, Mn and Fe is obvious, which can be explained by using the localized spin- 
fluctuation (LSF) theory developed by Zlatic and others [SI. In the LSF approach, a sharp 
resonance due to localized spin fluctuation is set up at EF. A detailed account of the LSF 
approach is given by Griiner ef al [SI. 

Using a relatively narrow resonance at EF for Cr, Mn and Fe (the respective widths 
used are inferred from [5] and are equal to 0.024.0.01 and 0.04 Ryd respectively) the 
new calculated thermoelectric powers, shown under column bLSF of table 4, are in 
good agreement with the observed values. For AIFe, we get a slightly smaller value in 
magnitude than obtained by Zlatic [SI, which is probably due to the positioning of 
the resonance and the use of an approximate expression by him for evaluating the 
thermopowers. For simplicity, we have assumed that the resonances due to the spin 
fluctuations are situated at EF. 

3.6. Dingle temperature 

The de Haas-van Alphen (dHvA) effect describes the changes in the electronic energy 
levels of solids due to the magnetic fields. The presence of an impurity in the solid 
changes the electronic energy levels and hence affects the dHvA effect. It can be shown 
that the energy levels become broadened in the presence of the impurities [24]. The 
broadeningof energy levels is described in terms of the Dingle temperature (similar to 
thermal broadening), TD, defined as [25] 

Equation (17) is derived by assuming an average relaxation time over the Fermi surface. 
As the Dingle temperature is directly related to the scattering of Fermi electrons, the 
impurity whose virtual bound state is the closest to the host Fermi energy should have 
the largest Dingle temperature. This is found to be true for AICr. 

The effect of impurities on electron scattering in a magnetic field can be measured 
in terms of the Dingle temperature TD. Our calculated values of the Dingle temperature 
for 3d impurities in AI are listed in table 5. The Dingle temperature increases from Ti 
to Cr and then decreases, indicating the amount of effective scattering by each impurity. 
As expected, the resonant scattering of the Fermi electrons for AICr leads to the 
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Tabte6. Change in the mefficient ofelectronicspecific heat for3d impuitiesin AI calculated 
using the Green function LMTO method (gl) compared with experimental values (a) taken 
from [U]. 

a 
. , . ~ ~ ,  . , , . ,  , , 

Impurity g1 

Ti 0,0308 
V 0.0368 0.72 C 0.06 
Cr 0.0352 0.32 2 0.06 
Mn 0.0252 0.44 2 0.04 
Fe 0.W7 
CO - 0 . W  
Ni -0.0247 
cu -0.0270 

maximum TD. The amount of scattering decreases on both sides of Cr, which is reflected 
in the decreased To. We have also listed the TD calculated by Mrosan and Lehmann 
[25]. Although their calculation is not self-consistent, the agreement is remarkable. We 
have not been able to find any experimental values for TD for AI-based alloys. 

3.7. Electronic specific heat 

The electronic contribution to the specific beat of solids is related to the total density of 
states at E,, The coefficient of the electronic specific heat, ycl, is given by [26] 

Ye] = &nZk2n(EF) (18) 
where we have ignored the electron-phonon interaction, The impurity changes the 
density of states at EF and that changes the electronic contribution to the specific heat 
ofthealloy, The totalchangein thedensityofstatesdueto theimpuritycan becalculated 
by taking the derivative of equation (18) with respect to energy and evaluating it at E,, 
i.e. 

The change in the coefficient of electronic specific heat is given by 

Aycl c W E F )  (20) 
where cis the impurity concentration. 

The calculated changes in the coefficient of the electronic specific heats for 3d 
impurities in AI are given in table 6. For AICo, AlNi and AICu, the change in the 
coefficients of the specific heat is negative. The values for AlCr and AlMn are uncertain 
due to the presence of the VBS near EF in these alloys. The observed values of Ayet, 
reported by Aoki and Ohtsuka [27] are higher than our predicted values for AIV, AlCr 
and AIMn. 

4. Summary and conclusions 

We have studied AI-based dilute alloys using the Green function LMTO method. For our 
self-consistent calculations we have assumed that the impurity potential is localized 
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within the impurity ws sphere. The assumption of only one perturbed muffin tin implies 
that all the host atoms, including'the nearest-neighbour atoms, are taken to be bulk- 
like. Using the resulting self-consistent potential at the impurity site we have calculated 
the transport properties such as impurity resistivity, thermoelectric power, Dingle 
temperature and electronic specific heat for 3d transition-metal impurities in Al. 

We find that our results are well described by the Friedel virtual bound-state and 
Anderson impurity models and these are in excellent agreement with the experimental 
data. Most of the transport properties of dilute alloys can he explained on the basis of 
the Friedel-Anderson model. An analysis based on phase shifts up to 1 = 2 is sufficient 
to account for most of the observed properties. In the case of nearly magnetic alloys, 
e.g. Cr, Mn and Fe in AI, the explanation of the observed thermoelectric power requires 
the localized spin-fluctuation model. 

The Green function LMTO method is found to be as accurate as the Green function 
KKR method for describing the transport properties of dilute alloys. From our results we 
also see that: (i) the lack of combined correction terms in the impurity Hamiltonian 
introduces negligible error, (ii) the use of more than one energy panel improves the 
accuracy, and (iii) a careful analysis is needed before enforcing the Friedel sum rule with 
only one permitted muffin tin. 

Our results are based on perturbing only the impurity muffin fin, but, to be able to 
predict charge transfers between the impurity and the host atoms more accurately, we 
must perturb at least the nearest-neighbour host atoms. In the Green function LMTO 
method, the perturbation of the nearest-neighbour atoms leads to a significant increase 
in the computational effort. In some cases, lattice relaxation may become important. 
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